一、Hadoop概述
1.1 概念
HDFS,它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。 HDFS的设计适合一次写入,多次读出的场景,且不支持文件的修改。适合用来做数据分析,并不适合用来做网盘应用。
1.2 Hadoop组成:
1)HDFS集群包括,NameNode和DataNode以及Secondary Namenode。
2)NameNode负责管理整个文件系统的元数据,以及每一个路径(文件)所对应的数据块信息。
3)DataNode 负责管理用户的文件数据块,每一个数据块都可以在多个datanode上存储多个副本。
4)Secondary NameNode用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照。
1.2.1 HDFS
HDFS架构概述:
1)NameNode(nn)存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间,副本数,文件权限),以及每个文件的块列表和块所在的DataNode等
2)DataNode(dn)在本地文件系统存储文件块数据,以及块数据的校验和
3)SecondaryNameNode(2nn)用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照
1.2.2 YARN
1)ResourceManager(rm)处理客户端请求,启动/监控ApplicationMaster,监控NodeManager,资源分配与调度
2)NodeManager(nm)单个节点上的资源管理,处理来自ResourceManager的命令、处理来自ApplicationMaster的命令
3)ApplicationMaster:数据切分,为应用程序申请资源,并分配给内部任务、任务监控与容错
4)Container:对任务运行环境的抽象,封装了CPU、内存等多维资源以及环境变量、启动命令等任务运行相关的信息
1.2.3 MapReduce:
MapReduce将计算过程分为两个阶段:
1)Map阶段并行处理输入的数据
2)Reduce阶段对Map结果进行汇总
二、Hadoop运行环境搭建
2.1 本地机器修改hosts
2.2 虚拟化网络设置为NAT
2.3 克隆虚拟机
2.4 修改为静态ip:
[root@hadoop101 /]#vim /etc/udev/rules.d/70-persistent-net.rules
进入如下页面,删除eth0该行;将eth1修改为eth0,同时复制物理ip地址
2.4.1 修改IP地址
[root@hadoop101 /]#vim /etc/sysconfig/network-scripts/ifcfg-eth0
需要修改的内容有5项:
IPADDR=192.168.1.101
GATEWAY=192.168.1.2
ONBOOT=yes
BOOTPROTO=static
DNS1=192.168.1.2
修改前
修改后
执行
service network restart
如果报错,reboot,重启虚拟机
2.4 修改主机名
2.4.1 修改hostname
vi /etc/sysconfig/network
注意:主机名称不要有下划线
2.4.2
vim /etc/hosts
添加如下内容 192.168.1.100 hadoop100
192.168.1.101 hadoop101
192.168.1.102 hadoop102
192.168.1.103 hadoop103
192.168.1.104 hadoop104
192.168.1.105 hadoop105
192.168.1.106 hadoop106
192.168.1.107 hadoop107
192.168.1.108 hadoop108
192.168.1.109 hadoop109
192.168.1.110 hadoop110
可以多添加几个,后来在增加节点时,不用再修改hosts
2.4.3 本地机器修改hosts
C -> Windows -> System32 -> drivers -> etc
添加如下内容 192.168.1.100 hadoop100
192.168.1.101 hadoop101
192.168.1.102 hadoop102
192.168.1.103 hadoop103
192.168.1.104 hadoop104
192.168.1.105 hadoop105
192.168.1.106 hadoop106
192.168.1.107 hadoop107
192.168.1.108 hadoop108
192.168.1.109 hadoop109
192.168.1.110 hadoop110
2.5 关闭防火墙
1)查看防火墙开机启动状态
chkconfig iptables --list
2)关闭防火墙
chkconfig iptables off
2.6 在opt目录下创建文件(用户atguigu下)
2.6.1 创建atguigu用户
在root用户里面执行如下操作
[root@hadoop101 opt]# adduser atguigu
[root@hadoop101 opt]# passwd atguigu
2.6.2 设置atguigu用户具有root权限
修改 /etc/sudoers 文件,找到下面一行,在root下面添加一行,如下所示:
## Allow root to run any commands anywhere
root ALL=(ALL) ALL
atguigu ALL=(ALL) ALL
修改完毕,现在可以用atguigu帐号登录
2.6.3 在/opt目录下创建文件夹
(1)在root用户下创建module、software文件夹
mkdir module
mkdir software
(2)修改module、software文件夹的所有者
[root@hadoop101 opt]# chown module
[root@hadoop101 opt]# chown atguigu software
[root@hadoop101 opt]# ls -al
2.7 安装jdk
1)卸载现有jdk
(1)查询是否安装java软件:
rpm -qa|grep java
(2)如果安装的版本低于1.7,卸载该jdk:
rpm -e 软件包
2)用filezilla工具将jdk、Hadoop-2.7.2.tar.gz导入到opt目录下面的software文件夹下面
3)在linux系统下的opt目录中查看软件包是否导入成功
[root@hadoop101opt]# cd software/
[root@hadoop101software]# ls
jdk-7u79-linux-x64.gz hadoop-2.7.2.tar.gz
4)解压jdk到/opt/module目录下
tar -zxf jdk-7u79-linux-x64.gz -C /opt/module/
5)配置jdk环境变量
(1)先获取jdk路径:
[root@hadoop101 jdk1.7.0_79]# pwd
/opt/module/jdk1.7.0_79
2)打开/etc/profile文件:
[root@hadoop101 jdk1.7.0_79]# vi /etc/profile
在profie文件末尾添加jdk路径:
##JAVA_HOME
export JAVA_HOME=/opt/module/jdk1.7.0_79
export PATH=$PATH:$JAVA_HOME/bin
(3)保存后退出::wq
(4)让修改后的文件生效:
[root@hadoop101 jdk1.7.0_79]# source /etc/profile
(5)重启(如果java –version可以用就不用重启):
[root@hadoop101 jdk1.7.0_79]# sync
[root@hadoop101 jdk1.7.0_79]# reboot
6)测试jdk安装成功
[root@hadoop101 jdk1.7.0_79]# java -version
java version "1.7.0_79"
2.8 安装Hadoop
1)进入到Hadoop安装包路径下:
[root@hadoop101 ~]# cd /opt/software/
2)解压安装文件到/opt/module下面
[root@hadoop101 software]# tar -zxf hadoop-2.7.2.tar.gz -C /opt/module/
3)查看是否解压成功
[root@hadoop101 software]# ls /opt/module/
hadoop-2.7.2
4)配置hadoop中的hadoop-env.sh
(1)Linux系统中获取jdk的安装路径:
[root@hadoop101 jdk1.7.0_79]# echo $JAVA_HOME
/opt/module/jdk1.7.0_79
(2)修改hadoop-env.sh文件中JAVA_HOME 路径:
export JAVA_HOME=/opt/module/jdk1.7.0_79
5)将hadoop添加到环境变量
(1)获取hadoop安装路径:
[root@ hadoop101 hadoop-2.7.2]# pwd
/opt/module/hadoop-2.7.2
(2)打开/etc/profile文件:
root@ hadoop101 hadoop-2.7.2]# vi /etc/profile
在profie文件末尾添加HADOOP_HOME路径:
##HADOOP_HOME
export HADOOP_HOME=/opt/module/hadoop-2.7.2
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin
(3)保存后退出:
:wq
(4)让修改后的文件生效:
root@ hadoop101 hadoop-2.7.2]# source /etc/profile
(5)重启(如果hadoop命令不能用再重启)
root@ hadoop101 hadoop-2.7.2]# sync
root@ hadoop101 hadoop-2.7.2]# reboot
三、Hadoop运行模式
1)官方网址
(1)官方网站:
(2)各个版本归档库地址
(3)hadoop2.7.2版本详情介绍
2)Hadoop运行模式
(1)本地模式(默认模式):
不需要启用单独进程,直接可以运行,测试和开发时使用。
(2)伪分布式模式:
等同于完全分布式,只有一个节点。
(3)完全分布式模式:
多个节点一起运行。
3.1 本地文件运行Hadoop 案例
3.1.1 官方grep案例
1)创建在hadoop-2.7.2文件下面创建一个input文件夹
[atguigu@hadoop101 hadoop-2.7.2]$mkdir input
2)将hadoop的xml配置文件复制到input
[atguigu@hadoop101 hadoop-2.7.2]$cp etc/hadoop/*.xml input
3)执行share目录下的mapreduce程序
[atguigu@hadoop101 hadoop-2.7.2]$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar grep input output 'dfs[a-z.]+'
4)查看输出结果
[atguigu@hadoop101 hadoop-2.7.2]$ cat output/*
3.1.2 官方wordcount案例
1)创建在hadoop-2.7.2文件下面创建一个wcinput文件夹
[atguigu@hadoop101 hadoop-2.7.2]$mkdir wcinput
2)在wcinput文件下创建一个wc.input文件
[atguigu@hadoop101 hadoop-2.7.2]$cd wcinput
[atguigu@hadoop101 wcinput]$touch wc.input
3)编辑wc.input文件
[atguigu@hadoop101 wcinput]$vim wc.input
在文件中输入如下内容
hadoop yarn
hadoop mapreduce
atguigu
atguigu
保存退出::wq
4)回到hadoop目录/opt/module/hadoop-2.7.2
5)执行程序:
[atguigu@hadoop101 hadoop-2.7.2]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar wordcount wcinput wcoutput
6)查看结果:
[atguigu@hadoop101 hadoop-2.7.2]$cat wcoutput/part-r-00000
atguigu 2
hadoop 2
mapreduce 1
yarn 1
3.2 伪分布式运行Hadoop 案例
3.2.1 HDFS上运行MapReduce 程序
1)分析:
(1)准备1台客户机
(2)安装jdk
(3)配置环境变量
(4)安装hadoop
(5)配置环境变量
(6)配置集群
(7)启动、测试集群增、删、查
(8)在HDFS上执行wordcount案例
2)执行步骤
需要配置hadoop文件如下
(1)配置集群
(a)配置:hadoop-env.sh
Linux系统中获取jdk的安装路径:
[root@ hadoop101 ~]# echo $JAVA_HOME
/opt/module/jdk1.7.0_79
修改JAVA_HOME 路径:
export JAVA_HOME=/opt/module/jdk1.7.0_79
(b)配置:core-site.xml
<!-- 指定HDFS中NameNode的地址 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop101:9000</value>
</property>
<!-- 指定hadoop运行时产生文件的存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/module/hadoop-2.7.2/data/tmp</value>
</property>
(c)配置:hdfs-site.xml
<!-- 指定HDFS副本的数量 -->
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
(2)启动集群
(a)格式化namenode(第一次启动时格式化,以后就不要总格式化)
bin/hdfs namenode -format
(b)启动namenode
sbin/hadoop-daemon.sh start namenode
(c)启动datanode
sbin/hadoop-daemon.sh start datanode
(3)查看集群
(a)查看是否启动成功
[root@hadoop101 ~]# jps
13586 NameNode
13668 DataNode
13786 Jps
(b)查看产生的log日志
当前目录:/opt/module/hadoop-2.7.2/logs
[root@hadoop101 logs]# ls
hadoop-root-datanode-hadoop.atguigu.com.log
hadoop-root-datanode-hadoop.atguigu.com.out
hadoop-root-namenode-hadoop.atguigu.com.log
hadoop-root-namenode-hadoop.atguigu.com.out
SecurityAuth-root.audit
[root@hadoop101 logs]# cat hadoop-root-datanode-hadoop.atguigu.com.log
(c)web端查看HDFS文件系统
http://192.168.1.101:50070/dfshealth.html#tab-overview
注意:如果不能查看,看如下帖子处理
http://www.cnblogs.com/zlslch/p/6604189.html
(4)操作集群 (a)在hdfs文件系统上创建一个input文件夹
[atguigu@hadoop101 hadoop-2.7.2]$ bin/hdfs dfs -mkdir -p /user/atguigu/mapreduce/wordcount/input
(b)将测试文件内容上传到文件系统上
bin/hdfs dfs -put wcinput/wc.input /user/atguigu/mapreduce/wordcount/input/
(c)查看上传的文件是否正确
bin/hdfs dfs -ls /user/atguigu/mapreduce/wordcount/input/
bin/hdfs dfs -cat /user/atguigu/mapreduce/wordcount/input/wc.input
(d)在Hdfs上运行mapreduce程序
bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar wordcount /user/atguigu/mapreduce/wordcount/input/ /user/atguigu/mapreduce/wordcount/output
(e)查看输出结果
命令行查看:
bin/hdfs dfs -cat /user/atguigu/mapreduce/wordcount/output/*
浏览器查看
(f)将测试文件内容下载到本地
hadoop fs -get /user/atguigu/mapreduce/wordcount/output/part-r-00000 ./wcoutput/
(g)删除输出结果
hdfs dfs -rmr /user/atguigu/mapreduce/wordcount/output
3.2.2 YARN上运行MapReduce 程序
1)分析:
(1)准备1台客户机
(2)安装jdk
(3)配置环境变量
(4)安装hadoop
(5)配置环境变量
(6)配置集群yarn上运行
(7)启动、测试集群增、删、查
(8)在yarn上执行wordcount案例
2)执行步骤
(1)配置集群
a)配置yarn-env.sh
配置一下JAVA_HOME
export JAVA_HOME=/opt/module/jdk1.7.0_79
(b)配置yarn-site.xml
<!-- reducer获取数据的方式 -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!-- 指定YARN的ResourceManager的地址 -->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop101</value>
</property>
(c)配置:mapred-env.sh
配置一下JAVA_HOME
export JAVA_HOME=/opt/module/jdk1.7.0_79
(d)配置: (对mapred-site.xml.template重新命名为) mapred-site.xml
<!-- 指定mr运行在yarn上 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
(2)启动集群
(a)启动resourcemanager
sbin/yarn-daemon.sh start resourcemanager
(b)启动nodemanager
sbin/yarn-daemon.sh start nodemanager
(3)集群操作
(a)yarn的浏览器页面查看
http://192.168.1.101:8088/cluster
(b)删除文件系统上的output文件,output不能是已经存在的目录
bin/hdfs dfs -rm -R /user/atguigu/mapreduce/wordcount/output
(c)执行mapreduce程序
bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar wordcount /user/atguigu/mapreduce/wordcount/input /user/atguigu/mapreduce/wordcount/output
(d)查看运行结果
bin/hdfs dfs -cat /user/atguigu/mapreduce/wordcount/output/*
3.2.3 修改本地临时文件存储目录
1)停止进程
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/yarn-daemon.sh stop nodemanager
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/yarn-daemon.sh stop resourcemanager
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh stop datanode
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh stop namenode
2)修改hadoop.tmp.dir
[core-site.xml]
<!-- 指定hadoop运行时产生文件的存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/module/hadoop-2.7.2/data/tmp</value>
</property>
3)格式化NameNode
[atguigu@hadoop101 hadoop-2.7.2]$ hadoop namenode -format
4)启动所有进程
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start namenode
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start datanode
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/yarn-daemon.sh start resourcemanager
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/yarn-daemon.sh start nodemanager
5)查看/opt/module/hadoop-2.7.2/data/tmp这个目录下的内容
3.2.4 Hadoop配置文件说明
Hadoop配置文件分两类:默认配置文件和自定义配置文件,只有用户想修改某一默认配置值时,才需要修改自定义配置文件,更改相应属性值。
(1)默认配置文件:存放在hadoop相应的jar包中
[core-default.xml]
hadoop-common-2.7.2.jar/ core-default.xml
[hdfs-default.xml]
hadoop-hdfs-2.7.2.jar/ hdfs-default.xml
[yarn-default.xml]
hadoop-yarn-common-2.7.2.jar/ yarn-default.xml
[core-default.xml]
hadoop-mapreduce-client-core-2.7.2.jar/ core-default.xml
(2)自定义配置文件:存放在$HADOOP_HOME/etc/hadoop
core-site.xml
hdfs-site.xml
yarn-site.xml
mapred-site.xml
3.2.5 历史服务配置启动查看
1)配置mapred-site.xml
<property>
<name>mapreduce.jobhistory.address</name>
<value>hadoop101:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hadoop101:19888</value>
</property>
2)查看启动历史服务器文件目录:
[root@hadoop101 hadoop-2.7.2]# ls sbin/ |grep mr
mr-jobhistory-daemon.sh
3)启动历史服务器
sbin/mr-jobhistory-daemon.sh start historyserver
4)查看历史服务器是否启动
jps
5)查看jobhistory
http://192.168.1.101:19888/jobhistory
3.2.6 日志的聚集
日志聚集概念:应用运行完成以后,将日志信息上传到HDFS系统上
开启日志聚集功能步骤:
(1)配置yarn-site.xml
<!-- 日志聚集功能使能 -->
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<!-- 日志保留时间设置7天 -->
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>604800</value>
</property>
(2)关闭nodemanager 、resourcemanager和historymanager
sbin/yarn-daemon.sh stop resourcemanager
sbin/yarn-daemon.sh stop nodemanager
sbin/mr-jobhistory-daemon.sh stop historyserver
(3)启动nodemanager 、resourcemanager和historymanager
sbin/yarn-daemon.sh start resourcemanager
sbin/yarn-daemon.sh start nodemanager
sbin/mr-jobhistory-daemon.sh start historyserver
(4)删除hdfs上已经存在的hdfs文件
bin/hdfs dfs -rm -R /user/atguigu/mapreduce/wordcount/output
(5)执行wordcount程序
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar wordcount /user/atguigu/mapreduce/wordcount/input /user/atguigu/mapreduce/wordcount/output
(6)查看日志
http://192.168.1.101:19888/jobhistory
3.3 完全分布式部署Hadoop
分析:
1)准备3台客户机(关闭防火墙、静态ip、主机名称)
2)安装jdk
3)配置环境变量
4)安装hadoop
5)配置环境变量
6)安装ssh
7)配置集群
8)启动测试集群
3.3.1 虚拟机准备
(详见2.2-2.3)
3.3.2 主机名设置
(详见2.4)
3.3.3 scp
1)scp可以实现服务器与服务器之间的数据拷贝
2)案例实操
(1)将hadoop101中/opt/module和/opt/software文件拷贝到hadoop102、hadoop103和hadoop104上
[root@hadoop101 /]# scp -r /opt/module/ root@hadoop102:/opt
[root@hadoop101 /]# scp -r /opt/software/ root@hadoop102:/opt
[root@hadoop101 /]# scp -r /opt/module/ root@hadoop103:/opt
[root@hadoop101 /]# scp -r /opt/software/ root@hadoop103:/opt
[root@hadoop101 /]# scp -r /opt/module/ root@hadoop104:/opt
[root@hadoop101 /]# scp -r /opt/software/ root@hadoop105:/opt
(2)将192.168.1.102服务器上的文件拷贝到当前用户下
[root@hadoop101 opt]# scp root@hadoop102:/etc/profile /opt/tmp/
(3)实现两台远程机器之间的文件传输(hadoop103主机文件拷贝到hadoop104主机上)
[atguigu@hadoop102 test]$ scp atguigu@hadoop103:/opt/test/haha atguigu@hadoop104:/opt/test/
3.3.4 SSH无密码登录
1)配置ssh
(1)基本语法
ssh 另一台电脑的ip地址
(2)ssh连接时出现Host key verification failed的解决方法
[root@hadoop2 opt]# ssh 192.168.1.103
The authenticity of host '192.168.1.103 (192.168.1.103)' can't be established.
RSA key fingerprint is cf:1e:de:d7:d0:4c:2d:98:60:b4:fd:ae:b1:2d:ad:06.
Are you sure you want to continue connecting (yes/no)?
Host key verification failed.
(3)解决方案如下:直接输入yes
2)无密钥配置
(1)进入到我的home目录
cd ~/.ssh
(2)生成公钥和私钥:
ssh-keygen -t rsa
然后敲(三个回车),就会生成两个文件id_rsa(私钥)、id_rsa.pub(公钥)
(3)将公钥拷贝到要免密登录的目标机器上
ssh-copy-id 192.168.1.102
3).ssh文件夹下的文件功能解释
(1)~/.ssh/known_hosts :记录ssh访问过计算机的公钥(public key)
(2)id_rsa :生成的私钥
(3)id_rsa.pub :生成的公钥
(4)authorized_keys :存放授权过得无秘登录服务器公钥
3.3.5 rsync
rsync远程同步工具,主要用于备份和镜像。具有速度快、避免复制相同内容和支持符号链接的优点
(1)查看rsync使用说明
man rsync | more |
(2)基本语法
rsync -rvl $pdir/$fname $user@hadoop$host:$pdir
命令 命令参数 要拷贝的文件路径/名称 目的用户@主机:目的路径
选项
-r 递归
-v 显示复制过程
-l 拷贝符号连接
(3)案例实操
把本机/opt/tmp目录同步到hadoop103服务器的root用户下的/opt/tmp目录
rsync -rvl /opt/tmp/* root@hadoop103:/opt/tmp
3.3.6 编写集群分发脚本xsync
1)需求分析:循环复制文件到所有节点的相同目录下
(1)原始拷贝:
rsync -rvl /opt/module root@hadoop103:/opt/
(2)期望脚本:
xsync 要同步的文件名称
(3)在/usr/local/bin这个目录下存放的脚本,可以在系统任何地方直接执行,需要制定路径
2)案例实操:
(1)在/usr/local/bin目录下创建xsync文件,文件内容如下:
#!/bin/bash
#1 获取输入参数个数,如果没有参数,直接退出
pcount=$#
if((pcount==0)); then
echo no args;
exit;
fi
#2 获取文件名称
p1=$1
fname=`basename $p1`
echo fname=$fname
#3 获取上级目录到绝对路径
pdir=`cd -P $(dirname $p1); pwd`
echo pdir=$pdir
#4 获取当前用户名称
user=`whoami`
#5 循环
for((host=103; host<105; host++)); do
#echo $pdir/$fname 0$user@hadoop$host:$pdir
echo --------------- hadoop$host ----------------
rsync -rvl $pdir/$fname $user@hadoop$host:$pdir
done
(2)修改脚本 xcall 具有执行权限
[root@hadoop102 bin]# chmod a+x xcall
(3)调用脚本形式: xcall 操作命令
[root@hadoop102 ~]# xcall rm -rf /opt/tmp/profile
3.3.8 配置集群
1)集群部署规划
2)配置文件
(1)core-site.xml
<!-- 指定HDFS中NameNode的地址 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop102:9000</value>
</property>
<!-- 指定hadoop运行时产生文件的存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/module/hadoop-2.7.2/data/tmp</value>
</property>
(2)Hdfs
hadoop-env.sh
export JAVA_HOME=/opt/module/jdk1.7.0_79
hdfs-site.xml
<configuration>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>hadoop104:50090</value>
</property>
</configuration>
slaves
hadoop102
hadoop103
hadoop104
(3)yarn
yarn-env.sh
export JAVA_HOME=/opt/module/jdk1.7.0_79
yarn-site.xml
<configuration>
<!-- Site specific YARN configuration properties -->
<!-- reducer获取数据的方式 -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!-- 指定YARN的ResourceManager的地址 -->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop103</value>
</property>
</configuration>
(4)mapreduce
mapred-env.sh
export JAVA_HOME=/opt/module/jdk1.7.0_79
mapred-site.xml
<configuration>
<!-- 指定mr运行在yarn上 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
3)在集群上分发以上所有文件
cd /opt/module/hadoop-2.7.2/etc/hadoop
xsync /opt/module/hadoop-2.7.2/etc/hadoop/core-site.xml
xsync /opt/module/hadoop-2.7.2/etc/hadoop/yarn-site.xml
xsync /opt/module/hadoop-2.7.2/etc/hadoop/slaves
4)查看文件分发情况
xcall cat /opt/module/hadoop-2.7.2/etc/hadoop/slavesv
3.3.9 集群启动及测试
1)启动集群
(0)如果集群是第一次启动,需要格式化namenode
[root@hadoop102 hadoop-2.7.2]# bin/hdfs namenode -format
(1)启动HDFS:
[root@hadoop102 hadoop-2.7.2]# sbin/start-dfs.sh
[root@hadoop102 hadoop-2.7.2]# jps
4166 NameNode
4482 Jps
4263 DataNode
[root@hadoop103 桌面]# jps
3218 DataNode
3288 Jps
[root@hadoop104 桌面]# jps
3221 DataNode
3283 SecondaryNameNode
3364 Jps
(2)启动yarn
sbin/start-yarn.sh
tips: Namenode和ResourceManger如果不是同一台机器,不能在NameNode上启动 yarn,应该在ResouceManager所在的机器上启动yarn
2)集群基本测试
(1)上传文件到集群
上传小文件
bin/hdfs dfs -mkdir -p /user/atguigu/tmp/conf
bin/hdfs dfs -put etc/hadoop/*-site.xml /user/atguigu/tmp/conf
上传大文件
[atguigu@hadoop102 hadoop-2.7.2]$ bin/hadoop fs -put /opt/software/hadoop-2.7.2.tar.gz /user/atguigu/input
(2)上传文件后查看文件存放在什么位置
文件存储路径
[atguigu@hadoop102 subdir0]$ pwd
/opt/module/hadoop-2.7.2/data/tmp/dfs/data/current/BP-938951106-192.168.10.107-1495462844069/current/finalized/subdir0/subdir0
查看文件内容
[atguigu@hadoop102 subdir0]$ cat blk_1073741825
hadoop
atguigu
atguigu
(3)拼接
-rw-rw-r--. 1 atguigu atguigu 134217728 5月 23 16:01 blk_1073741836
-rw-rw-r--. 1 atguigu atguigu 1048583 5月 23 16:01 blk_1073741836_1012.meta
-rw-rw-r--. 1 atguigu atguigu 63439959 5月 23 16:01 blk_1073741837
-rw-rw-r--. 1 atguigu atguigu 495635 5月 23 16:01 blk_1073741837_1013.meta
[atguigu@hadoop102 subdir0]$ cat blk_1073741836>>tmp.file
[atguigu@hadoop102 subdir0]$ cat blk_1073741837>>tmp.file
[atguigu@hadoop102 subdir0]$ tar -zxvf tmp.file
(4)下载
[atguigu@hadoop102 hadoop-2.7.2]$ bin/hadoop fs -get /user/atguigu/input/hadoop-2.7.2.tar.gz
3)性能测试集群
写海量数据
读海量数据
3.3.10 Hadoop启动停止方式
1)各个服务组件逐一启动
(1)分别启动hdfs组件
hadoop-daemon.sh start|stop namenode|datanode|secondarynamenode
(2)启动yarn
yarn-daemon.sh start|stop resourcemanager|nodemanager
2)各个模块分开启动(配置ssh是前提)常用
(1)整体启动/停止hdfs
start-dfs.sh
stop-dfs.sh
(2)整体启动/停止yarn
start-yarn.sh
stop-yarn.sh
3.3.11 配置集群常见问题
1)防火墙没关闭、或者没有启动yarn
INFO client.RMProxy: Connecting to ResourceManager at hadoop108/192.168.10.108:8032
2)主机名称配置错误
3)ip地址配置错误
4)ssh没有配置好
5)root用户和atguigu两个用户启动集群不统一
6)配置文件修改不细心
7)未编译源码
Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/05/22 15:38:58 INFO client.RMProxy: Connecting to ResourceManager at hadoop108/192.168.10.108:8032
8)datanode不被namenode识别问题
Namenode在format初始化的时候会形成两个标识,blockPoolId和clusterId。新的datanode加入时,会获取这两个标识作为自己工作目录中的标识。 一旦namenode重新format后,namenode的身份标识已变,而datanode如果依然持有原来的id,就不会被namenode识别
解决办法,删除datanode节点中的数据后,再次重新格式化namenode
9)不识别主机名称
java.net.UnknownHostException: hadoop102: hadoop102
at java.net.InetAddress.getLocalHost(InetAddress.java:1475)
at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:146)
at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1290)
at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1287)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
解决办法:
(1)在/etc/hosts文件中添加192.168.1.102 hadoop102
(2)主机名称不要起hadoop hadoop000等特殊名称
10)datanode和namenode进程同时只能工作一个
图
11)执行命令 不生效,粘贴word中命令时,遇到-和长–没区分开。导致命令失效
解决办法:尽量不要粘贴word中代码
12)jps发现进程已经没有,但是重新启动集群,提示进程已经开启。原因是在linux的根目录下/tmp目录中存在启动的进程临时文件,将集群相关进程删除掉,再重新启动集群